
Hyena Input Mapping - v1.0

SpaceHyena – All rights reserved – www.spacehyena.com

Hyena Input Mapping
Remapping made easy

Quick Overview | Full Demo & ALS Integration | Docs | UE marketplace

Description

'Hyena Input Mapping' plugin for Unreal Engine 5 is a versatile and developer-friendly

module designed to streamline input mapping and remapping in any project.

Can be set up for keyboard + mouse only, gamepad only, or support both seamlessly.

Developed in C++, this plugin is designed to be used in Blueprints, ensuring accessibility for

all developers, regardless of their programming expertise.

Designed to use fully customizable widgets and icons, the plugin allows developers to

create tailored input interfaces that fit any unique aesthetic.

Core concepts

(UE5) Enhanced Input Subsystem

– Input Mapping Context

– Input Action

(Plugin) Hyena Input Mapping

– HyenaIM_Box

– HyenaIM_PDA_Keys

– HyenaInputKeySelector

If you are not familiar with the first, please refer to the official documentation.

This document will try to cover the second.

Note: After uploading to the marketplace, the "Plugin Content" folder has been moved to:

Engine / Plugins / HyenaInputMapping

Developer note: this is a code plugin, not a UI design course.

You can expect this to work smoothly, not necessarily to look polished. The demo widgets

and menus are provided as extras, to serve as guide and as functionality showcase.

http://www.spacehyena.com
https://www.unrealengine.com/marketplace/en-US/product/hyena-input-mapping
https://www.spacehyena.com/hyenaIM-docs.pdf
https://www.youtube.com/watch?v=JD4SwqZ_NAw&list=PLgV1OXtsdT4NhaSay7qgL0I_1pnSOp_Uv
https://youtu.be/8liViHaYuzQ
https://dev.epicgames.com/community/learning/tutorials/eD13/unreal-engine-enhanced-input-in-ue5

Hyena Input Mapping - v1.0

SpaceHyena – All rights reserved – www.spacehyena.com

Let’s start with an overview of the 3 core classes.

HyenaIM_Box

Re-Mapping box. Inherits from ScrollBox.

Just add it to any settings menu in the correct widget,

page, tab, or whatever you’re using.

It’s as drag-and-drop as possible. There are some

variables that you need to set though.

The setup video, may cover this better.

“GroupingStyle” can be:

– “None” – Simple setup, just a list of HyenaIKS’s

– “Categories” – Little more complex, adds 2

extra widgets, one for category titles, and the

other for category scrolls

BP exposed functions – hovering the nodes will give you an explanation of each one

*First one expected to run most likely on Construct *last one only if supporting both keyboard and gamepad

Repeated keys event - Can be used for feedback, logic, or simply ignored. Only fires on state

change. You could block the player from saving if there are repeated keys.

Only fires at BeginPlay if there are repeated keys, which is unlikely.

*Note on design choice: I decided to go with allowing repeated keys rather than “removing”

the other action that used the same key as it’s safer and cleaner. I wouldn’t like to bloat the

plugin with options. Could be added by v2.0 if I have a lot of requests. If you want to do it

yourself, should be easy to implement with C++ with a couple of extra functions, another

struc like the QuestionMark in the PDA_Keys and a fallback key for the “empty key”, though.

http://www.spacehyena.com

Hyena Input Mapping - v1.0

SpaceHyena – All rights reserved – www.spacehyena.com

HyenaIM_PDA_Keys

Parent class mostly for “key + texture” TMaps. Inherits from PrimaryDataAsset.

It will decide what keys are allowed. If p.e. [Space Bar] key is allowed, we will, of course,

need a texture for it.

– “Question Mark” it’s the icon that will be used while “Selecting a new key”.

Can be whatever, not necessarily a “?”. *Used “Global Menu” key as fallback

Using 2 TMaps to force non-repeated keys here as it can (and will) get messy with arrays.

*You’ll see the keyboard defaults bring ”WASD” keys first (intentionally). If you plan to move with

those, you probably want to remove them straight away. QoL thing, is faster to remove than to add.

Dark DA demo

Icons: https://juliocacko.itch.io/free-input-prompts

Light DA demo

Icons: https://thoseawesomeguys.com/prompts/

*Yes, Light DA gamepad icons are not really “light”, those are just examples for the demo.

http://www.spacehyena.com
https://juliocacko.itch.io/free-input-prompts
https://thoseawesomeguys.com/prompts/

Hyena Input Mapping - v1.0

SpaceHyena – All rights reserved – www.spacehyena.com

HyenaInputKeySelector

Extension of the UE “Input Key Selector”. Inherits from UserWidget though.

A lot of stuff is happening under the hood, but we don’t really care in BP. (/o_o)/#

Just 2 functions to consider, please refer to the demos to see examples.

We’ll need 3 “objects” for it to run properly And we have a function for feedback and logic on focus change

You can customize the widget however you wish. Just update the InitializationSelector.

If you’re wondering why, try disconnecting, and you’ll quickly realize why all 3 are necessary.

So now we have covered the 3 main classes.

Extra classes

Not as important as the others, but still add certain functionality or QoL.

HyenaIM_CatTitle

Category Title. Inherits from UserWidget.

Should contain at least one TextBlock to display, well, the title.

HyenaIM_CatScroll

Category Scroll. Inherits from ScrollBox.

No logic here. Created to allow A/B-ing different styles, borders, paddings, transforms, etc.

http://www.spacehyena.com

Hyena Input Mapping - v1.0

SpaceHyena – All rights reserved – www.spacehyena.com

Extra notes:

Why 3 IMC?

That’s a good question. You can skip this. But if you’re curious, long explanation incoming:

Why 2? I decided to separate the ‘Mappable’ and ‘UnMappable’, pretty straightforward:

– No need to save UnMappable keys as those won’t be ever remapped.

– Re-mapping actions with modifiers, well, no documentation, good luck trying...

– Easier to work with, I would personally do it anyway.

So why the 3rd ‘Defaults’? It’s supposed to be a duplicate of the ‘Mappable’ anyway.

Idea 1: Create a 2nd object like ‘Mappable_Defaults.save’ (first iteration was like this)

– Biggest issue: in editor only, IMC gets remapped to a somewhat half-persistent state.

Elaborating a little: after restarting the editor remapping goes back to before

remapping. Yet, while the project is open, the IMC gets “rewritten” with the new

mappings. That can be inconvenient while setting them up as there’s no way to

know what the defaults were without restarting the editor.

– (unlikely) “Bad” problem: if the ‘Mappable_Defaults.save’ gets removed at runtime

both in editor and in the packaged game, I don’t think there’s any way to get the

pre-mappings anymore without a full editor/game restart.

Idea 2: Save a copy in the game instance

– We’re coupling other classes (bad) when it can be avoided.

– An interface could be ok, but then again, won’t simplify the process for newbies.

So, after a lot of thought and end up going for a level 1 solution.

It’s not like we’re changing the ‘Mappable’ IMC every minute, so after modification, just

duplicate this ‘Mappable’ to keep an always-fresh IMC that (1) will never be remapped and

(2) is always accessible, both in editor and in packaged game. Can’t go wrong with this.

Takes a few seconds to update the ‘Defaults’ after changing the ‘Mappable’, example steps:

1. Duplicate the ‘Mappable’ IMC and name it ‘NewDefaults’

2. Delete (old) ‘Defaults’. When prompted, pick ‘NewDefaults’ at “Replace references”

*remember to update redirectors if you have naming issues

Done!

http://www.spacehyena.com

